Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1.
نویسندگان
چکیده
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.
منابع مشابه
Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors.
Zinc finger domains are small DNA-binding modules that can be engineered to bind desired target sequences. Functional transcription factors can be made from these DNA-binding modules, by fusion with an appropriate effector domain. In this study, eight three-zinc-finger proteins (ZFPs) that bound HIV-1 sequences in vitro were engineered into transcription repressors by linking them to the Krüppe...
متن کاملInhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site.
The human immunodeficiency virus type 1 (HIV-1) primer-binding site (PBS) is a highly conserved region in the HIV genome and represents an attractive target for the development of new anti-HIV therapies. In this study, we designed four artificial zinc finger transcription factors to bind at or adjacent to the PBS and repress transcription from the HIV-1 long terminal repeat (LTR). These protein...
متن کاملA nuclear protein with enhanced binding to methylated Sp1 sites in the AIDS virus promoter.
We report here the discovery of HMBP, a protein in nuclei of human T-helper lymphocytes and other human cell types, which binds with enhanced affinity to a promoter element in the HIV-1 long terminal repeat when that element is methylated at CpGs, the target site of the human DNA methyltransferase. This promoter element contains three (degenerate) binding sites for Sp1, a general activator of t...
متن کاملInhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors.
The herpes simplex virus 1 (HSV-1) replicative cycle begins by binding of the viral activator, VP16, to a set of sequences in the immediate-early (IE) gene promoters. With the aim of inhibiting this cycle, we have constructed a number of synthetic zinc-finger DNA-binding peptides by using recently reported methods. Peptides containing either three or six fingers, targeted to a viral promoter, w...
متن کاملHistone deacetylase-1 represses transcription by interacting with zinc-fingers and interfering with the DNA binding activity of Sp1.
Sp1 activates the transcription of many cellular and viral genes, and histone deacetylase 1 (HDAC1) removes the acetyl group of nucleosomal core histones. Treatment of cells with the histone deacetylase 1 inhibitor, TSA, robustly activates the transcription of the Sp1-dependent promoters, suggesting the inhibition of Sp1 activity which is critical in the activation of transcription, by HDAC1. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 22 شماره
صفحات -
تاریخ انتشار 2005